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Abstract 

A recently developed classical model for electronically non­

adiabatic collision processes is applied to electronic-vibrational 

energy transfer in a collinear atom~diatom system, A + BC(v=l) + 

A*+ BC(v=O), which closely resembles Br-H2• This classical model, 

which treats electronic as well as heavy particle (i.e., translation, 

rotation? and vibration} degrees of freedom by classical mechanics, 

is found to describe the resonance features in this process 

reasonably well. The usefulness of the approach is that it allows 

one to extend standard Monte Carlo classical trajectory methodology 

to include electronically non-adiabatic processes in a dynamically 

consistent way, 
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I. Introduction 

1 A series of papers over the last few years has developed and 

applied a classical model for treating electronically non-adiabatic 

processes in molecular collisions. The novel feature of this model 

is that electronic, as well as heavy particle (i.e,, translation, 

rotation, and vibrationl, degrees of freedom are described by 

classical mechanics, and its attractiveness from a practical point 

of view is that calculations can be carried out within the framework 

2 of standard Monte Carlo classical trajectory methodology. 

One of the motivations for developing this completely classical 

model was the realization3 that "mixed" dynamical models--i.e., those 

which characterize some degrees of freedom by classical mechanics 

and others by quantum mechanics--fail to describe some features of 

the dynamics correctly. The very popular and often successful 

surface-hopping model, 4 for example, which treats heavy particle 

motion classically but electronic degrees of freedom quantum mechanically 

Cas states~ i.e., distinct potential energy surfaces), is unable to 

describe resonance effects between electronic and heavy particle 

degrees of freedom. Such resonance effects are important in the 

quenching of excited fluorine atoms (2
P;

2
) by collision with H2 

5 

-1 
because the 404 em excitation energy of fluorine is roughly equal 

(~ithin ~ 10%) to the energy of the 0+2 rotational excitation of H2. 

Similarly, Br* C2P1) is thought6 to he quenched efficiently by H2 2 

because the vibrational quantum o;f ~ approximately matches the 

3685 .,..l · · f b · S · th 1 · 1 od 1
1 

em exc~tat~on energy o .r.omJ.ne,. ~nee e c assJ.ca m e 
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treats all degrees of freedom on the same dynamical footing, i.e., 

by classical mechanics, it has been reasoned that it should be able 

to describe these aspects of resonance energy trasfer at least 

qualitatively correctly. To see how quantitative the model is, 

however, requires numerical applications, and such is the purpose 

of this paper. 

Earlier calculations1d have shown that the classical model does 

indeed provide a reasonably good description of the resonance effect 

between electronic and rotational degrees of freedom in F-H2 

collisions, 

(1.1) 

The cross section for this process is much larger at low collision 

energies than for quenching by a comparable rare gas atom that does 

not have rotational degrees of freedom. The present paper considers 

a simple model of electronic-vibrational energy transfer that would 

pertain, for example, to the quenching of Br* by H2 , 

(1. 2) 

The particular example we consider is the collinear version of such 

7 a system for which Lee, Lam, DeVries, and George have recently 

carried out quantum mechanical coupled channel calculations. Lee 

et al. 's calculations provide the exact results for this model 

problem, which can thus serve as a benchmark to see how well the 

classical model is able to describe such non-adiabatic processes. 
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Section II defines the system treated by Lee et al. and briefly 

summarizes the classical model as it applies to this example. The 

results are discussed in Section III. 
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II. The Model 

7 Lee ~ al. consider a collinear atom-diatom collision system, 

A+ BC, with two potential energy surfaces, i.e., two electronic 

states, corresponding to ground and excited states of the atom A, 

The 2 x 2 diabatic interaction potential surface matrix is 

( 1' ";A) 
=~ 2A 

F 3 3 

(2.1) 

where r is the vibrational coordinate of BC and R the translational 

coordinate, the distance of A to the center of mass of BC. It is 

useful to make a unitary transformation of this potential matrix 

to diagonalize the first term, the atomic part of the interaction 

that survives as R ~ oo, The appropriate unitary transformation 

matrix is 

u (2.2) 

and for the transformed potential matrix ~· 

t V - U •V•U (2.3) 

one obtains 
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(2.4) 

where 

(2.5a) 

All 
1 2 =-A + 3 Al 3 0 

(2.5b) 

AlO 
12 

AOl = =- (A -A ) 
3 1 0 

(2.5c) 

The classical model1 for the electronic degrees of freedom 

replaces the diabatic potential matrix VN,N'(R,r), N,N' = 0,1 of 

Eq. (2.5) by a classical electronic Hamiltonian V(R,r,N,Q) which 

is defined in terms of the matrix elements by 

(2.6) 

(N,Q} are the classical action-angle variables8 for the electronic 

degrees of freedom; i.e., N is the classical electronic quantum 

number. With Eq. (2.4} one notes that as R + oo :lrq.. (2.6) becomes 

(2.7) 
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thus N is a conserved quantity in the asymptotic region, with N=O 

corresponding to the ground electronic state of atom A (with energy 

0) and N=l to the excited state A* (with energy A). 

To obtain the classical Hamiltonian for the complete system one 

adds to V(R,r,N,Q) the potential energy for free vibrational motion 

of BC and the kinetic energy for vibration and translation, and with 

Eqs. (2.4) and (2.6) this gives 

P
2 

p
2 

1 2 2 
H(P,R,p,r,N,Q) = 2~ + Zm + 2 mw (r-r0) 

-a(R-lr - p ) 
+ NA + e 2 0 [(1-N)AOO + NAll 

(2.8) 

where m and ~ are the reduced masses for BC vibration and A-BC 

translation, respectively. To obtain the final form of the 

classical Hamiltonian one replaces the vibrational coordinate and 

momentum (r,p) by their action-angle variables8 (n,q), 

l2n+1' 
r-r =v~ cosq 0 mw (2.9a) 

p = - J (2n+ l)mw 
1 

sinq (2.9b) 

giving 
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p2 1 
H(P,R,n,q,N,Q) = 

211 
+ (n+2)w + NA 

cosQ] (2.10) 

The results presented in the next section correspond to 

implementation of the classical model within the framework of the 

2 9 standard quasiclassical histogram approach. ' Thus to compute 

the probability for the following vibration-to-electronic transition, 

A+ BC(n=l) + A* + BC(n=O) (2.11) 

one integrates Hamiltonian's equations (generated from the Hamiltonian 

of Eq. (2.10)) with initial conditions 

n(t
1

) "' 1 - nl 

N(t
1

) = 0 - Nl 

q (tl) = 2'1T~l 

Q(tl) = 2'1T~2 

R(t
1

) :::: large 

P(t1) = - Jzll [Etr -(nl +t)w-Nl A] (2 .12) 
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where ~l and ~ 2 are random numbers in (0,1) and Etr is the initial 

translational energy. The final values of n and N that correspond 

to Eq. (2.11) are n=O, N=l,. and the quasiclassical approximation to 

the probability of this transition is the fraction of trajectories 

with the above initial conditions that have their actual final values 

of n and N within a "box" of unit width about these values n=O, N=L 

The parameters in the classical Hamiltonian, Eq. (2.10), which 

7 correspond to Lee et al.'s calculations are 

w "" 0.02 a = 3 

Ro 4.7 Aoo 
11 10-5 = ::::-X 
3 

m = 1000 All = 1]_ X 10-5 
3 

= 3896.1 AOl 
212 10-5 (2.13) 11 :::::--X . 

3 

These values, in atomic units, correspond roughly to the Br-H2 system. 

The parameter A, the A+ A* excitation energy, is varied in these 

model calculations to assess the significance of resonance in the 

electronic-vibrational energy transfer. Exact resonance, for 

example, corresponds to A = w = 0.02, so for very low translational 

energies, where resonance considerations are most important, one 

would expect the transition probability for Eq. (2.11) to be largest 

for A ~ 0.02. By varying A one can see how prominent the resonance 

effect is and how well the classical model is able to describe it. 
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III. Results and Discussion 

Figures 1-3 show the transition probability for Eq. (2.11) as 

a function of the atomic energy gap A for translational energies of 

0.01 eV, 0.035 eV, and 0.055 eV, respectively. The solid curves are 

the exact quantum mechanical results computed by Lee et al.,
7 

and 

the broken curves the present results of the classical model. As 

expected, the resonance structures is sharpest at the lowest 

translational energy; i.e., in Figure 1 the transition probability 

peaks sharply at A ~ 0.02. At higher translational energy the 

resonance structure broadens and shifts. 

The significant point to note is that this classical model does 

describe the resonance features in this process reasonably well. 

The position and width of the resonance peak are described well 

over the entire energy range considered. Used in this primitive 

histogram mode, however, the classical results do have shortcomings: 

the peak heights are too large (by a factor of two in the worst case, 

Figure 1) and the classical results do not describe the wings of the 

resonance line shape well. This latter failing is typical of all 

quasiclassical histogram treatments, namely the inability to describe 

weak (classically forbidden) processes. 9 

The encouraging note is that the quasiclassical results for this 

electronically inelastic process are no worse than typical quasi-

classical results for rotationally and vibrationally inelastic 

10 
processes. Thus the classical model for electronic degrees of 

freedom seems to do about as well (or as poorly,, depending on one's 
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point of view) in describing electronically inelastic processes as 

classical mechanics does for inelastic processes involving only 

heavy particle degrees of freedom. To the extent that this level 

of accuracy is sufficient one thus has a consistent dynamical model 

for treating both electronically non-adiabatic as well as adiabatic 

collision processes. 
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Figure Captions 

1. Transition probability for Eq. (2.11) as a function of the atomic 

excitation energy \, for an initial translational energy E = tr 

0.01 eV. The solid curve is the exact quantum result of Lee et al. 

(reference 7) and the broken curve the results of the present 

classical model; the error bar is the usual Monte Carlo error 

estimate. 

2. Same as Figure 1 except Etr = 0.035 eV. 

3. Same as Figure 1 except Etr = 0.055 eV. 
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